On Stochastic and Worst-case Models for Investing
نویسندگان
چکیده
In practice, most investing is done assuming a probabilistic model of stock price returns known as the Geometric Brownian Motion (GBM). While often an acceptable approximation, the GBM model is not always valid empirically. This motivates a worst-case approach to investing, called universal portfolio management, where the objective is to maximize wealth relative to the wealth earned by the best fixed portfolio in hindsight. In this paper we tie the two approaches, and design an investment strategy which is universal in the worst-case, and yet capable of exploiting the mostly valid GBM model. Our method is based on new and improved regret bounds for online convex optimization with exp-concave loss functions.
منابع مشابه
On Calibration and Application of Logit-Based Stochastic Traffic Assignment Models
There is a growing recognition that discrete choice models are capable of providing a more realistic picture of route choice behavior. In particular, influential factors other than travel time that are found to affect the choice of route trigger the application of random utility models in the route choice literature. This paper focuses on path-based, logit-type stochastic route choice models, i...
متن کاملDetection of Outliers and Influential Observations in Linear Ridge Measurement Error Models with Stochastic Linear Restrictions
The aim of this paper is to propose some diagnostic methods in linear ridge measurement error models with stochastic linear restrictions using the corrected likelihood. Based on the bias-corrected estimation of model parameters, diagnostic measures are developed to identify outlying and influential observations. In addition, we derive the corrected score test statistic for outliers detection ba...
متن کاملSolving the Paradox of Multiple IRR\'s in Engineering Economic Problems by Choosing an Optimal -cut
Until now single values of IRR are traditionally used to estimate the time value of cash flows. Since uncertainty exists in estimating cost data, the resulting decision may not be reliable. The most commonly cited drawbacks to using the internal rate of return in evaluatton of deterministic cash flow streams is the possibility of multiple conflicting internal rates of return. In this paper we p...
متن کاملApproximation Algorithms for Stochastic Optimization Problems in Operations Management
This article provides an introduction to approximation algorithms in stochastic optimization models arising in various application domains, including central areas of operations management, such as scheduling, facility location, vehicle routing problems, inventory and supply chain management and revenue management. Unfortunately, these models are very hard to solve to optimality both in theory ...
متن کاملA 2-Approximation Algorithm for Stochastic Inventory Control Models with Lost Sales
In this paper, we describe the first computationally efficient policies for stochastic inventory models with lost sales and replenishment lead times that admit worst-case performance guarantees. In particular, we introduce dual-balancing policies for lost-sales models that are conceptually similar to dual-balancing policies recently introduced for a broad class of inventory models in which dema...
متن کامل